Āut Labs
  • Āut Labs
  • The Āutonomy Matrix
  • $AUT Token
  • Framework Intro & Components
    • Āutonomy Matrix
    • The Participation Score
      • More about Expected Contributions
    • ĀutID: a Member< >Hub bond
    • Interactions, Tasks & Contributions - a context-agnostic standard.
    • Contribution Points
      • Calculating eCP and other dependent & independent params
    • The Hub - or, the whole is greater than the sum of its parts.
    • Roles on-chain. If there is Hope, it lies in the Roles
    • Commitment Level as an RWA
      • Discrete CL Allocation
    • Peer Value
      • Flow & aggregation of value
  • 🕹️Participation Score
    • Design Thinking
      • Problems with traditional Local Reputation parameters
      • Innovation Compared to other “Local Reputation” protocols
      • Hub<>Participant Accountability & Rewards
    • Core Parameters
    • Formulæ
    • Edge Cases
      • 1. The Private Island
      • 2. Cannibal Members
      • 3. The Ghost & the House on Fire
    • PS Formula for all Edge Cases
    • Conclusions
  • 🎇Prestige
    • Prestige: introducing measurable credibility for a DAO
    • Need for a DAO to measure its KPIs overtime (on-chain)
    • Archetypes
      • Defining an Organizational Type
      • Existing Organizational Types
      • Deep-dive: Calculating current Parameters (p)
    • Formulas for Prestige
      • Normalization of p
    • Prestige for all edge cases
      • Relationship between Prestige & Archetype parameters
    • How to expand Prestige through external Data Sources
    • Use-cases & Conclusions
  • 🌎Peer Value
    • Initial Applications
    • Relationship between Participant, Hubs & Peer Value
    • Peer Value (v) as a directed graph
      • Calculating normalized Participation Score (PS'')
      • Calculating normalized Prestige (P'')
      • Calculating the Contributor Archetype (a)
    • The Peer archetype
      • Formulæ for α & deep-dives
      • Formulæ for β & deep-dives
      • Formulæ for γ & deep-dives
    • Conclusions & Initial Applications
  • ⚽Appendices & Playgrounds
    • PS Simulations
    • PS Playground
    • Prestige Simulations
    • Prestige Playground
Powered by GitBook
LogoLogo

PARTICIPATE

  • Website
  • ĀutOS
  • Hub Explorer

© Āut Labs 2025

On this page
  • Parameters
  • Calculate the Proportional Decrease of each Hub's iCL
  • Final Formula
  • Simplified as a matrix
  • Examples
  • Sequence Diagram
  1. Framework Intro & Components
  2. Commitment Level as an RWA

Discrete CL Allocation

Every time an ĀutID joins a new Hub, their Commitment Level amounts rebase dynamically, reducing the Commitment assigned to the previous Hubs. Based on their Commitment, members can hit different tiers and it’s up to each Hub to decide whether they want to differentiate permissions and rewards based on those tiers.

Below the process we use to make the CL allocation self-rebasing and discrete.

Parameters

  • iCLtot=100iCL_{tot} = 100iCLtot​=100: the Total Individual Commitment Level that a user j has available to allocate to the set of Hubs [H⋅]{[\tt H \cdot]}[H⋅] in which they contribute.

  • N: the number of Hubs [h⋅]∈[H⋅]{[\tt h \cdot]} \in {[\tt H \cdot]}[h⋅]∈[H⋅] where j is already contributing.

  • iCL[h⋅]iCL_{[\tt h \cdot]}iCL[h⋅]​: the iCL allocated by j to a Hub [h⋅]{[\tt h \cdot]}[h⋅]

  • aiCLtotaiCL_{tot}aiCLtot​: the iCL allocated to Hubs where j is already contributing.

  • iCLnewiCL_{new}iCLnew​: the iCL allocated to the new Hub.

  • fiCL[h⋅]fiCL_{[\tt h \cdot]}fiCL[h⋅]​: the fractional CL allocated by j to each Hub.

  • uiCL[H⋅]uiCL_{[\tt H \cdot]}uiCL[H⋅]​: the updated CL for previous Hubs in the set [H⋅]{[\tt H \cdot]}[H⋅].

  • riCL: the remaining iCL, calculated as iCLtot−aiCLtotiCL_{tot} - aiCL_{tot}iCLtot​−aiCLtot​

Calculate the Proportional Decrease of each Hub's iCL

  • Calculate the total iCL allocated to existing Hubs: aiCL[j, h⋅]=∑[h⋅]=1NiCLN\displaystyle aiCL_{[j, \text{ } \tt h \cdot]} = \sum_{[\tt h \cdot] = 1}^N iCL_{N}aiCL[j, h⋅]​=[h⋅]=1∑N​iCLN​

  • then allocate a portion of riCLriCLriCL to a new Hub [h⋅](new)[\tt h \cdot]_{(new)}[h⋅](new)​

  • Calculate the remaining points: riCL=iCLtot−aiCLriCL = iCL_{tot} - aiCLriCL=iCLtot​−aiCL

  • Calculate the proportion of iCL for each existing Hub: fiCL[j h⋅]=iCL[h⋅]aiCLtot ∀ [h⋅]∈[H⋅]\displaystyle fiCL_{[j \text{ } \tt h \cdot]} = \frac{iCL_{[\tt h \cdot]}}{aiCL_{tot}} \text{ } \forall \text{ } [\tt h \cdot] \in [\tt H \cdot]fiCL[j h⋅]​=aiCLtot​iCL[h⋅]​​ ∀ [h⋅]∈[H⋅]

  • Adjust the allocation for each existing Hub: uCL[h⋅]=fiCL[h⋅]×riCL ∀ [h⋅] in [H⋅]j\displaystyle uCL_{[\tt h \cdot]} = fiCL_{[\tt h \cdot]} \times riCL \text{ } \forall \text{ } [\tt h \cdot] \text{ } in \text{ } [\tt H \cdot]_{j}uCL[h⋅]​=fiCL[h⋅]​×riCL ∀ [h⋅] in [H⋅]j​

Final Formula

the new iCL is calculated as:

uCL[j, h⋅]=iCL[h⋅]×(iCLtot−iCLnew)∑h⋅=1NiCLN ∀ [h⋅] ∈ [H⋅]j\displaystyle uCL_{[j, \text{ } \tt h \cdot]} = \displaystyle iCL_{[\tt h \cdot]} \times \frac {(iCL_{tot} - iCL_{new})}{\displaystyle \sum_{\tt h \cdot=1}^{N} {iCL_N}} \text{ } \forall \text{ } [\tt h \cdot] \text{ } \in \text{ } [\tt H \cdot]_{j}uCL[j, h⋅]​=iCL[h⋅]​×h⋅=1∑N​iCLN​(iCLtot​−iCLnew​)​ ∀ [h⋅] ∈ [H⋅]j​

with ∑[h⋅][1+...+N]=[H⋅]\displaystyle \sum {[\tt h \cdot]}_{[\tiny 1 + ... + N]} = [\tt H \cdot]∑[h⋅][1+...+N]​=[H⋅]

Simplified as a matrix

Another way to visualize the iCL update is through a basic matrix:

riCL=iCLtot−iCLnewfiCL[h⋅]=[iCL1iCLtotiCL2iCLtot⋮iCL[h⋅]iCLtot]uCLj=fiCLj×riCLj\begin{align*} riCL &= iCL_{tot} - iCL_{new} \\ \mathbf{fiCL_{[\tt h \cdot]}} &= \begin{bmatrix} \tiny \frac{iCL_{1}}{iCL_{tot}} \\ \tiny \frac{iCL_{2}}{iCL_{tot}}\\ \vdots \\ \scriptsize \frac{iCL_{[\tt h \cdot]}}{iCL_{tot}} \end{bmatrix} \\ \mathbf{uCL}_{j} &= \mathbf{fiCL}_{j} \times riCL_{j} \end{align*}riCLfiCL[h⋅]​uCLj​​=iCLtot​−iCLnew​=​iCLtot​iCL1​​iCLtot​iCL2​​⋮iCLtot​iCL[h⋅]​​​​=fiCLj​×riCLj​​

Steps:

  1. We extract riCL from the known values of:

    [i] allocated commitment, and

    [ii] newly-added commitment.

  2. We apply the fiCL ratio to determine each iCL[j, h⋅]iCL_{[j, \text{ } \tt h \cdot]}iCL[j, h⋅]​’s individual weight.

  3. We multiply each individual fiCL[1, ..., N]fiCL_{[1, \text{ }..., \text{ } N]}fiCL[1, ..., N]​ for previously extracted riCLriCLriCL (1.)

Examples

Scenario [i.] -> step-by-step, with flat iCL values

Let's assume that:

  • a user j is part of 5 Hubs → N = 5

  • j has allocated 20 iCL points per Hub → iCL[1,2,3,4,5]=20iCL_{\tiny [1, 2, 3, 4, 5]} = 20iCL[1,2,3,4,5]​=20

  • j joins a 6th Hub, allocating 10 CL points to it → iCL_{\tiny new} = 10

In order to update existing Hubs’ allocation, we'll need to:

  1. Calculate Remaining Points: riCL=100−10=90riCL = 100 - 10 = 90riCL=100−10=90

  2. Calculate Sum iCL for existing Hubs: ∑aiCLtot=20×5=100\sum{aiCL_{tot}} = 20 \times 5 = 100∑aiCLtot​=20×5=100

  3. Calculate Proportions: fiCLh⋅=20100=0.2 ∀ [h⋅]fiCL_{\tt h \cdot} = \frac{20}{100} = 0.2 \text{ }\forall \text{ } {[\tt h \cdot]}fiCLh⋅​=10020​=0.2 ∀ [h⋅]

  4. Recalculate iCL for Existing Hubs: uCL[h⋅]=0.2×90=18uCL_{[\tt h \cdot]} = 0.2 \times 90 = 18uCL[h⋅]​=0.2×90=18

So each of the 5 original Hubs would have their CL adjusted to 18, and the new Hub would have a CL of 10, maintaining the total at 100.

Scenario [ii.] -> direct calculations, with higher iCL variety

5 Hubs:

  • iCL[h⋅]1=16iCL_{[\tt h \cdot]_{1}} = 16iCL[h⋅]1​​=16

  • iCL[h⋅]2=18iCL_{[\tt h \cdot]_{2}} = 18iCL[h⋅]2​​=18

  • iCL[h⋅]3=20iCL_{[\tt h \cdot]_{3}} = 20iCL[h⋅]3​​=20

  • iCL[h⋅]4=22iCL_{[\tt h \cdot]_{4}} = 22iCL[h⋅]4​​=22

  • iCL[h⋅]5=24iCL_{[\tt h \cdot]_{5}} = 24iCL[h⋅]5​​=24

  • aiCLtot=100aiCL_{tot} = 100aiCLtot​=100

new:

  • iCL[h⋅]new=20iCL_{[\tt h \cdot]_{new}} = 20iCL[h⋅]new​​=20

  • uCL[h⋅]1=16100×(100−20)=0.16×80=12.8uCL_{[\tt h \cdot]_{1}} = \frac {16} {100} \times (100 - 20) = 0.16 \times 80 = 12.8uCL[h⋅]1​​=10016​×(100−20)=0.16×80=12.8

  • uCL[h⋅]2=18100×(100−20)=0.18×80=14.4uCL_{[\tt h \cdot]_{2}} = \frac {18} {100} \times (100 - 20) = 0.18 \times 80 = 14.4uCL[h⋅]2​​=10018​×(100−20)=0.18×80=14.4

  • uCL[h⋅]3=20100×(100−20)=0.20×80=16.0uCL_{[\tt h \cdot]_{3}} = \frac {20} {100} \times (100 - 20) = 0.20 \times 80 = 16.0uCL[h⋅]3​​=10020​×(100−20)=0.20×80=16.0

  • uCL[h⋅]4=22100×(100−20)=0.22×80=17.6uCL_{[\tt h \cdot]_{4}} = \frac {22} {100} \times (100 - 20) = 0.22 \times 80 = 17.6uCL[h⋅]4​​=10022​×(100−20)=0.22×80=17.6

  • uCL[h⋅]5=24100×(100−20)=0.24×80=19.2uCL_{[\tt h \cdot]_{5}} = \frac {24} {100} \times (100 - 20) = 0.24 \times 80 = 19.2uCL[h⋅]5​​=10024​×(100−20)=0.24×80=19.2

  • ∑[h⋅]=15=80+20→100\displaystyle \sum_{[\tt h \cdot] = 1}^{5} = 80 + 20 \rightarrow 100[h⋅]=1∑5​=80+20→100

Sequence Diagram

PreviousCommitment Level as an RWANextPeer Value

Last updated 2 months ago

The diagram shows how the dynamic re-allocation of iCL works at smart contract level.