Parameters & Calculations

Core Parameters

  • $Aˉstaked\text\$Ā_{\text{\tiny staked}}: The amount of $AUT staked by a Participant (Staker) on one of their Peers (Stakee).

  • D\overline D: The duration of the staking period as predicted by the Staker.

  • AjA_{j}: The "age" of the ĀutID of the stakee (j), represented by the sum of all periods in their Peer Value (υ\upsilon) history ( TGj\sum T_{G_{j}}).

  • DGj\sum{\overline{D}}{G_{j}}: represents the amount of segments D\overline D in which stakee’s Peer Value’s growth was equal to or greater than the predicted Growth.

  • EGEG is the Expected Growth of stakee’s Peer Value made by the Staker.

  • fDGjf\overline{D}{G_{j}}: the amount of continuous segments of periods T, of the same length of D.

    • Calculated as: fDGj=AjDGjf\overline{D}{G_{j}} = \frac {A_{j}}{\overline{D}{G_{j}}}, where:

      • DGj\overline D_{G_{j}} is a “segment”: defined as a discrete series of periods in sequence - of the same extent of Staker’s prediction.

  • GLiGL_{i}: a coefficient representing the likelihood/difficulty of the Stakee to achieve or exceed the predicted growth (EG) of their Peer Value. Calculated as:

    • GLi=1(DGjEGj)fDGjGLi=fDGj(DGjEGj)\displaystyle GL_{i} = \frac{1}{\frac{\sum{(\overline{D}}{G{j}}\ge EG_{j})}{f\overline{D}{G{j}}}} \rightarrow GL_{i} = \frac{f\overline D_{G_{j}}}{\sum{(\overline{D}}{G{j}}\ge EG_{j})}

    • or again, in prettier form:

    • GLi=fDGj×(DGjEGjEG)1\displaystyle GL_{i} = f\overline D_{G_{j}} \times (\sum_{\tiny \overline{D} G_{j} \ge EG_{j}} EG)^{-1}

Gains —> $Aˉ\$Ā_{\tiny \oplus}

$Aˉ={$Aˉ(staked)×1.5if (DGjEGj)=0$Aˉ(staked)×(1+GLi+DA)in all other cases \$Ā_{\oplus} = \begin{cases} \$Ā_{(staked)} \times 1.5 &\text{if } \sum{(\overline{D}}{G{j}}\ge EG_{j}) = 0 \\ \$Ā_{(staked)} \times (1 + GL_{i} + \frac {D}{A}) &\text{in all other cases } \end{cases}

where:

  • $Aˉ\$Ā_{\tiny \oplus} is the reward in $AUT to be given if the stake is successful.

Losses —> $Aˉ\$Ā_{\tiny \ominus}

$Aˉ={$Aˉ(staked)×0.75if (DGjEGj)=0$Aˉ(staked)×[1(GLi+DA)]in all other cases \$Ā_{\ominus} = \begin{cases} \$Ā_{(staked)} \times 0.75 &\text{if } \sum{(\overline{D}}{G{j}}\ge EG_{j}) = 0 \\ \$Ā_{(staked)} \times [1 - (GL_{i} + \frac {D}{A})] &\text{in all other cases } \end{cases}

where:

  • $Aˉ\$Ā_{\ominus} = $AUT losses

Last updated